TABLE OF CONTENTS
・Partial fraction decomposition
Partial fraction decomposition
Partial fraction decomposition is the operation of splitting a fraction into two parts.
Let’s start with the basic form and consider the following decomposition.
We’re looking for \( k \) that satisfies
\[ \frac{1}{ab} = k \left( \frac{1}{a} + \frac{1}{b} \right). \]
\[ \begin{align}
\frac{1}{ab} &= k \left( \frac{1}{a} + \frac{1}{b} \right) \\\\
\frac{1}{ab} &= k \left( \frac{a+b}{ab} \right)
\end{align}\]
Compare both sides,
\[ 1 = k \left( a+b \right) \]
Thus,
\[ k = \frac{1}{a+b} \]
\[ \frac{1}{ab} = \frac{1}{a+b} \left( \frac{1}{a} + \frac{1}{b} \right) = \frac{1}{a \left( a + b
\right) } + \frac{1}{b \left( a + b \right)} \]
\[ \begin{align}
\frac{1}{a \left( a + b \right) } &= \frac{1}{a + \left( a + b \right)} \left( \frac{1}{a} +
\frac{1}{a+b} \right) \\\\
&= \frac{1}{2a+b} \left( \frac{1}{a} + \frac{1}{a+b} \right) \\\\
\frac{1}{b \left( a + b \right)} &= \frac{1}{b + \left( a + b \right)} \left( \frac{1}{b} +
\frac{1}{a+b} \right) \\\\
&= \frac{1}{a + 2b} \left( \frac{1}{b} + \frac{1}{a+b} \right)
\end{align}\]
\[ \begin{align}
\frac{1}{2} &= \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 3} \\\\
&= \frac{1}{1 \cdot 4} + \frac{1}{3 \cdot 4} + \frac{1}{2 \cdot 5} + \frac{1}{3 \cdot 5} \\\\
&= \frac{1}{1 \cdot 5} + \frac{1}{4 \cdot 5} + \frac{1}{3 \cdot 7} + \frac{1}{4 \cdot 7} + \frac{1}{2
\cdot 7} + \frac{1}{5 \cdot 7} + \frac{1}{3 \cdot 8} + \frac{1}{5 \cdot 8} \\\\
&= \ldots
\end{align}\]
We’re looking for \( p \) and \( q \) that satisfy
\[ \frac{1}{\left( ax+b \right) \left( cx+d \right)} = \left( \frac{p}{ax+b} + \frac{q}{cx+d} \right) \]
\[ \begin{align}
\frac{1}{\left( ax+b \right) \left( cx+d \right)} &= \left( \frac{p}{ax+b} + \frac{q}{cx+d} \right) \\\\
&= \frac{p \left( cx+d \right) + q \left( ax+b \right)}{\left( ax+b \right) \left( cx+d \right)} \\\\
&= \frac{\left( cp + aq \right) x + dp + bq}{\left( ax+b \right) \left( cx+d \right)}
\end{align}\]
As before, we compare the left-hand side and the right-hand side.
However, this time we want to find \( p \) and \( q \), so we need to set up two equations involving these
variables.
Meanwhile, \( x \) also appears in the denominators. If we were to express it in terms of the other symbols in the denominators, such as \( a \) or \( b \), it would effectively change the denominators themselves — which would be inconvenient.
Therefore, we handle this by setting the coefficient of \( x \) in the numerator equal to 0, and the part independent of \( x \) equal to 1.
Meanwhile, \( x \) also appears in the denominators. If we were to express it in terms of the other symbols in the denominators, such as \( a \) or \( b \), it would effectively change the denominators themselves — which would be inconvenient.
Therefore, we handle this by setting the coefficient of \( x \) in the numerator equal to 0, and the part independent of \( x \) equal to 1.
\[ \begin{align}
[1] \ \ \ \ cp + aq &= 0 \\\\
[2] \ \ \ \ dp + bq &= 1
\end{align}\]
From [1], we have
\[ q = - \frac{c}{a} p \]
Substituting this into [2], we get
\[ \begin{align}
dp - \frac{bc}{a} p &= 1 \\\\
p \left( d - \frac{bc}{a} \right) &= 1 \\\\
p \cdot \frac{ad - bc}{a} &= 1 \\\\
p &= \frac{a}{ad - bc}
\end{align}\]
Therefore,
\[ \begin{align}
q &= - \frac{c}{a} p \\\\
&= - \frac{c}{a} \cdot \frac{a}{ad - bc} \\\\
&= - \frac{c}{ad - bc}
\end{align}\]
\[ \begin{align}
\frac{1}{\left( ax+b \right) \left( cx+d \right)} &= \left( \frac{p}{ax+b} + \frac{q}{cx+d} \right) \\\\
&= \left( \frac{\frac{a}{ad - bc}}{ax+b} + \frac{- \frac{c}{ad - bc}}{cx+d} \right) \\\\
&= \frac{1}{ad - bc} \left( \frac{a}{ax+b} - \frac{c}{cx+d} \right)
\end{align}\]
References:
[1] Partial fraction decomposition, https://en.wikipedia.org/wiki/Partial_fraction_decomposition,
October 20, 2025